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Abstract—A continuous sliding mode controller using super-
twisting algorithm is presented for a class of double integrator
systems with constant unknown control direction. The system
is also considered to be perturbed by unknown non-vanishing
Lipschitz disturbances. In contrast to existing continuous con-
trol solutions on this subject that at best can achieve exponential
stability, the developed controller yields finite time convergence
of the states to the origin of the system. Simulation results
are provided to demonstrate the robustness of the controller to
unknown control direction.

I. INTRODUCTION

Unknown control direction refers to a fixed or time-varying
uncertainty in the sign of the input gain. For a system such as
ẋ(t) = f(·) + bu(t), the sign of b governs the direction of the
control input u(t) applied to the system. Uncertainties in the
sign of b as a result of, for instance, variations in the operating
environment, manufacturing faults, or adversarial attacks can
lead to performance degradation and instability of the system.
The challenges in the controller design due to unknown control
direction have been successfully addressed in the adaptive
control framework using Nussbaum functions [1]. Variations
of the Nussbaum function approach have also been developed
for numerous systems [2]–[7] with uncertainty in the control
direction. Although the Nussbaum function approach can adapt
to the uncertain sign of the input gain, it can only guarantee
asymptotic stability of the system, and it exhibits an undesirable
peaking phenomenon as a result of high-gain feature of the
controller [3], [8]. Apart from the Nussbaum function approach,
monitoring functions [9]–[11] and minimum seeking Lyapunov
function [12] have also been developed to compensate for the
input sign uncertainty. While the aforementioned methods are
able to address the issue of unknown control direction, most
results lack stronger, beyond asymptotic, stability guarantees
and cannot accommodate unknown nonlinearities in system
dynamics (e.g., arising due to exogenous disturbances).
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Robust control theory, and, in particular, sliding mode control
(SMC) [13], provides another avenue to compensate for the
unknown control direction along with its inherent capacity for
disturbance rejection. In [8], Bartolini et al. developed a SMC-
based switching controller that yielded asymptotic stability for
systems with constant unknown control direction and uncertain
drift dynamics. In [14], Drakunov et al. compensated for the in-
put sign uncertainty by designing a periodic switching function
that slides along multiple-equilibrium surfaces. Our previous
work [15] extended the concept in [14] to develop a nonsingular
terminal SMC that achieves finite time convergence of the states
to the origin of the system in the presence of constant input sign
uncertainty and unknown state-varying disturbances. Although
discontinuous controllers can yield improved stability, often the
concern is about large bandwidth actuation and chattering that
results from high frequency switching over the sliding surface.

Various control techniques have been developed to attenuate
chattering by the introduction of, for example, boundary layer
[16], observers [17], multi-phase converters and phase shift
[18], low-pass filter [19], and gain adaptation [20]–[27]. In [28],
we presented an adaptive terminal SMC method for a second-
order system with time-varying unknown control direction,
where the control gain is varied to alleviate chattering and
maintain sliding motion with reduced control effort. Higher
order sliding mode (HOSM) control can also be used to
mitigate chattering. A well-known subclass of HOSM is the
super-twisting algorithm (STA), which, unlike HOSM, does
not require the knowledge of the derivatives of the sliding
variable. Due to this advantage, variations of the STA have been
developed in [29]–[31]. In [32], we developed an STA-based
controller that yields exponential stability in the presence of
constant unknown control direction. However, recent results in
homogeneous sliding mode control [31], [33], [34] are able to
guarantee finite time convergence of the system to the origin.
Motivated by the results in [33], it is of our interest to extend
the STA in [32] to achieve finite time convergence for systems
with unknown control direction.

The contribution of the presented work is in the development
of an STA-based continuous controller with finite time sta-
bility for systems with constant unknown control direction. We
consider systems with double integrator dynamics and relative
degree one. The magnitude of the scalar input gain is assumed
to be known, but its sign is unknown. The developed controller
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does not implement logic tests [8], [35] or monitoring functions
[9], [10] to determine the input sign uncertainty. As opposed to
[8]–[10], [14], [15], [28], [35], the control input presented in this
paper is continuous in time. Also, in constrast to [7], [32], [36]–
[38], the controller guarantees finite time convergence of the
system to the origin. Additionally, the developed controller can
compensate for unknown non-vanishing disturbances unlike
Nussbaum function based adaptive framework. The robustness
of the developed STA-based controller to input sign uncertainty
is verified through numerical simulations results. Comparison
to prior work: Although finite time convergence of the states
to the origin in guaranteed in [15] and [28], the terminal
SMC-based controllers therein are discontinuous in nature.
The discontinuity was removed by developing an STA-based
controller in [32], which ensures exponential stability of the
system. This paper presents a non-trivial extension of [32] by
considering a new sliding surface and redesigning the controller
to achieve finite time convergence of the states to the origin.

II. PROBLEM FORMULATION

Consider an uncertain system with double integrator dynam-
ics subjected to non-vanishing disturbance as

ẋ1 = x2

ẋ2 = f(t) + bu (1)

where x = [x1 x2]T ∈ R2 is the state of the system, u(t) ∈ R
is the control input, b ∈ R denotes the constant input gain, and
f(t) ∈ R represents the unknown non-vanishing disturbance.

Assumption 1:Thefunctionf(t) isLipschitzcontinuouswith
a known Lipschitz constant, i.e., the time-derivative ḟ(t) ∈ R
can be upper bounded by a known constant ¯̇

f ∈ R+ as

|ḟ(t)| ≤ ¯̇
f.

Assumption 2: The constant b in (1) can be written as b =
|b|sgn (b), which satisfies the following properties:
• The magnitude of b is known and |b| > 0.
• The sign of b is constant but unknown, and since |b| > 0,
sgn(b) ∈ {1,−1}.

Assumption 3: The system in (1) is controllable.
The objective is to design a continuous robust control input

u(t) that guarantees finite time stability of the system in (1) in
the presence of the input sign uncertainty and non-vanishing
disturbances.

III. SLIDING SURFACE DESIGN

Based on the SMC theory, to ensure that (1) converges to the
origin in finite time, the sliding surface s(t) can be designed as

s = x2 +

∫ t

0

α1 bx1ep1 + α2 bx2ep2 dτ (2)

where α1, α2 ∈ R+ are constants, p1 ∈ (0, 1), p2 = 2p1
1+p1

,
bx1ep1 = |x1|p1sgn(x1), and bx2ep2 = |x2|p2sgn(x2). When
the sliding surface ṡ(t) = 0 : ẋ2 = −α1 bx1ep1 − α2 bx2ep2 ,
andx(t)approaches theorigin infinite time[33].Tocompensate

for the sign uncertainty in b, the hypersurface s̃(t) can be
designed as

s̃ = s+ λ

∫ t

0

bsep3 dτ (3)

where λ ∈ R+ is a constant, and p3 ∈ (0, 1).
Taking time derivative of (2) and (3), we obtain

ṡ = ẋ2 + α1 bx1ep1 + α2 bx2ep2 (4)
˙̃s = ṡ+ λ bsep3 . (5)

Substituting (1) and (4) into (5), the open-loop system can be
obtained as

˙̃s = bu+ f(t) + s1 (6)
s1 = α1 bx1ep1 + α2 bx2ep2 + λ bsep3 . (7)

The hypersurface s̃(t) is used in the subsequent analysis to
compensate for the unknown control direction. It will be shown
that s̃(t) approaches a constant in finite time, hence s(t) decays
to zero in finite time, and thus the state x(t) reaches the origin
in finite time.

IV. CONTROLLER DEVELOPMENT

The control input u(t) in (1) is designed below. To facilitate
subsequent analysis, u(t) is segregated into two terms as

u = |b|−1

(
k1 bΨe1/2 +

∫ t

0

u2(τ) dτ + σL (Ω) s1

)
u2 = k2sgn (Ψ) (8)

where k1, k2 ∈ R+ are constants to be defined later, bΨe1/2 =

|Ψ|1/2 sgn(Ψ),σL (Ω) = σ
(

Ω
L

)
is the saturation function with

maximum magnitude of 1 and linear rangeL < 1, s1 is defined
in (7), and Ψ(t) and Ω(t) are sinusoidal function of the hyper
sliding surface s̃(t) defined as

Ψ(t) , sin
πs̃

ε
, Ω(t) , cos

πs̃

ε

whereε ∈ R+ is a constant that determines the spacing between
the equilibrium surfaces.

Using the super-twisting algorithm in [29] to represent the
surface s(t) as a second order system, the hypersurface s̃(t)
can also be written in the same manner. Substituting (8) into the
open-loop system in (6), the closed-loop system can be obtained
as

˙̃s = b1k1 bΨe1/2 + z + (b1σL (Ω) + 1)s1

ż = b1k2sgn (Ψ) + ḟ(t) (9)

where b1 = sgn(b). The constant k2 in (9) is designed to satisfy
the inequality k2 >

¯̇
f .

To facilitate the subsequent analysis, the term ż(t) can be
succinctly written as

ż =
bΨe1/2

2 |Ψ|1/2
(2ρ(t))
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where the function ρ(t) ∈ R is defined as

ρ , b1k2 + ḟ(t)sgn (Ψ) . (10)

Following similar procedures as in [29] and [32], let the vector
ζ(t) ∈ R2 be defined as

ζ(t) =

[
ζ1
ζ2

]
,

[
bΨe1/2
z

]
. (11)

Taking time derivative of ζ(t) along the trajectory in (5), ζ̇(t)
can be obtained as

ζ̇ =
1

2 |Ψ|1/2
(Aζ +B) . (12)

In (12), the time- and state-varying matrix A(x, t) and state-
varying vector B(x) can be obtained as

A =

[
πΩb1k1

ε Ωπ
ε

2ρ 0

]
, B =

[
π
εΩg

0

]
(13)

whereg = (b1σL (Ω)+1)s1. The expression in (12) is obtained
using the fact that the distributional product of the delta function
δ(x) with x is zero, i.e., xδ(x) = 0.

Theorem 1: For the system in (1), where the sign of the input
gain b is constant and unknown, provided that k1, k2 and ε are
designed to satisfy inequalities

k1 + µ1µ
−1
2 > µ3µ

−1
2

2π|Ω|
ε

>
1

2
(14)

|ρ| >
∣∣∣π
ε

Ωγk1

∣∣∣ k2 ≥ ¯̇
f (15)

where

µ1 = |γ| k1 + 2
(
β + γ2

)
µ4 +

2π |Ωρ|
ε

(β + γ2) (16)

µ2 = 2
(
β + γ2

) π2|Ωγ|
ε2

(
2|Ωγs| −

ε

2π

)
+ 3

π

ε
|Ωγρ| (17)

µ3 =

(
πΩ

ε

)2 (
β + γ2

)
+ 4ρ2

+

(
4|γρ|+ |γ|

2

)
π |γ|

2

(
2|Ωγs| −

ε

2π

)
(18)

µ4 =
π |Ωρ|
ε
−
(
πΩ

ε

)2

|γ| k1 (19)

γs = sgn(γ) (20)

then the control input u(t) in (8) ensures that the surface s̃(t)
is reached in finite time, and (s, x) is finite time stable.

Proof: Consider a Lyapunov candidate function V (t) ∈
R+ as

V = ζTPζ (21)

where P ∈ R2×2 is a positive definite symmetric matrix given
by

P =

[
β + γ2 γ
γ 1

]
(22)

where γ = −kγsgn(Ω) and β, kγ ∈ R+ are constants.
Taking time derivative of (21) along the trajectories of (1) and
substituting (12), the Lyapunov derivative can be obtained as

V̇ =
1

2 |Ψ|1/2
(
ζT
(
ATP + PA

)
ζ +BTPζ + ζTPB

)
+ ζT Ṗ ζ. (23)

Remark 1: Consider a set where s̃ = {ε/2, 3ε/2, 5ε/2, . . . }.
In this set Ω = 0, hence γ̇ = −kγδ, where δ is the Dirac delta
function. Although γ̇ is singular, V (t) does not immediately
go to infinity due to the property

∫ γ=∞
γ=−∞ δ(γ)dγ = 1. For

example, consider the case when the states are on an unattractive
manifold, i.e s̃ = κ + ε, where κ = 0,±ε,±2ε,±3ε, . . . .
This implies, from (9), that the hypersurface s̃(t) increases to
another constant s̃ = κ+2ε or decreases to s̃ = κ, where both
surfaces are attractive. This also implies that Ω continuously
increases from -1 to 1, or decreases from 1 to -1, while crossing
the boundary Ω = 0. Although γ̇ = −kγδ, when Ω = 0, the
control inputu(t) is continuous and the actual system in (1) does
not jump. Hence, the discontinuity at Ω = 0 can be regarded as
a jump from an unattractive set towards an attractive set. This
implies that Lyapunov candidate function in (21) is continuous
when the system is stable, i.e. the correct sign of b is identified,
which is equivalent to theLyapunov functionconsidered in [29].
It will be shown that the system is stable as Ω→ ±1, and Ω only
crosses the boundary Ω = 0 when it goes from an unattractive to
attractive region. Also, note that Ω = 0 does not correspond to
the equilibrium point. Therefore, the following analysis ignores
the case when Ω = 0 and hence Ṗ = 0 is used in (23).

The Lyapunov derivative can be upper bounded as

V̇ ≤ 1

2 |Ψ|1/2
(
ζTQζ +BTPζ + ζTPB

)
(24)

where Q = ATP + PA. The inequality in (24) can be written
as

V̇ ≤ 1

2 |Ψ|1/2
ζTQζ +

1

2 |Ψ|1/2
(
BTPζ + ζTPB

)
(25)

where Q(t) ∈ R2×2 is obtained as follows:

Q =

[
υ χ
χ 2γΩπ

ε

]
. (26)

The scalar functions χ(t), υ(t) ∈ R in (26) are as below

υ = 2
(
β + γ2

)
Ω
π

ε
b1k1 + 4γρ (27)

χ = γ
π

ε
Ωb1k1 + 2ρ+ (β + γ2)

π

ε
Ω. (28)

The objective is to ensure Q(t) to be negative definite. Let
Q1(t) = −Q(t) and consider

Q2 = Q1 −
|γ|
2
I (29)

where I ∈ R2×2 is the identity matrix. Then, Q2(t) can be
expressed as

Q2 = −
[
υ + |γ|/2 χ

χ σ

]
(30)
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where σ(t) = 2γΩπ
ε + |γ|

2 .
Recall that the eigenvalues are related to the determinant and

trace of the matrix as

det(Q2) = η1η2, trace(Q2) = η1 + η2 (31)

where η1 and η2 are the eigenvalues ofQ2(t). Whendet(Q2) >
0 and trace(Q2) > 0, this implies that the eigenvalues η1, η2 >
0 and the matrixQ2(t) is positive definite. To ensure thatQ2(t)
has positive eigenvalues, using the expressions in (31) and the
attractive properties of sgn(Ψ), the inequalities in (14) and (15)
have to be satisfied. From (29) and the definition of Q1, the
positive definiteness of Q2 ensures that Q is negative definite.

For unknown sgn(b), when the sliding surface s̃(t) = Ξ is
attractive, where Ξ is a constant, the sign of Ω always converges
to the opposite of the sign of b, i.e. sgn(Ω) = −sgn(b). This
implies that sgn(bΩ) = −1 when sgn(Ψ) is attractive, other-
wise sgn(bΩ) = 1. However, when sgn(Ψ) is not attractive,
the state s̃(t) leaves the current manifold and enters the region
where sgn(Ψ) is attractive.

In the set F = {Ω|b1σL(Ω) = −1}, there exist a positive
constant β, a function γ(t), and positive constants k1, k2, ε that
satisfy inequalities (14)-(15). Moreover, within the setF where
s̃(t) = Ξ is attractive, b1σL (Ω) = −1 and g = 0, which
implies that BTPζ + ζTPB = 0. Therefore, using (29) and
the fact that Q1(t) = −Q(t), the Lyapunov derivative can be
upper bounded as

V̇ ≤ −|γ| ‖ζ‖
2

4 |Ψ|1/2
(32)

where ‖·‖ denotes the Euclidean norm. From (11), it is clear
that ‖ζ‖ ≥ |Ψ|1/2. Using this fact and the definition of γ(t) in
(22), the inequality in (32) can be expressed as

V̇ ≤ −kγ
4
‖ζ‖ . (33)

The Lyapunov function V (t) in (21) can be upper and lower
bounded as

Λmin{P} ‖ζ‖2 ≤ V ≤ Λmax{P} ‖ζ‖2

where Λmin{P} and Λmax{P} are the minimum and maxi-
mum eigenvalues of P , respectively. Therefore, the Lyapunov
derivative in (33) can be further upper bounded as

V̇ ≤ − kγ

4
√

Λmax{P}
V 1/2. (34)

The inequality in (34) implies that V (t) goes to zero in finite
time [29]. This implies that s̃(t) goes to a constant in finite time,
which in conjunction with (5) yields the following equality:

ṡ = −λ bsep3 . (35)

From (35), it is clear that s(t) decays to zero in finite time. Given
the fact that s(t)→ 0 in finite time, it can easily be shown from
(2) and (4) that x(t)→ 0 in finite time [14], [33].

Similar to [29], the proposed control structure cannot stay on
the set S =

{
(Ψ, z) ∈ R2|Ψ = 0

}
. Since V (t) is continuously

decreasing, by using the Lyapunov theorem for differential
inclusions stated in Proposition 14.1 in [39], where V (t) does
not need to be continuously differentiable, it can be concluded
that the equilibrium (Ψ, z) can be reached in finite time from
any initial condition.

Remark 2: In (9), let |g| > |b1k1 bΨe1/2 + z|, then a
few behaviors manifest themselves on the sliding surface s̃(t).
Since sgn(g) dominates the direction of motion of s̃(t) in (9),
following cases can be considered to analyze the stability of the
system:

Case (I): Let s1 be sign definite, i.e. sgn (s1) = 1, for a
time interval [t0, t1], and sgn(Ω) is changing. Then sgn( ˙̃s) =
sgn(s1), which implies that s̃(t) is monotonically increasing.
This implies that the hypersurface eventually reaches an at-
tractive sliding surface s̃Ψ(t) = kΨε, where kΨ are odd/even
integers depending on the sign of b, which implies that g = 0
and the proper sign has been identified. Similar analysis can be
done when sgn (s1) = −1.

Case (II): The second case is when sgn (Ω) is held constant,
i.e., sgn (Ω) does not change, and sgn(s1) varies. When
sgn(s1) changes on the attractive set s̃a = kaε, where ka ∈ R
can be odd/even integers depending on the sign of b, the function
g = 0 when s̃ = kaε ± α, where 0 < α < π/2. This case is
trivial, and the proper sign has been identified. When sgn(s1)
changes on the unattractive set s̃u = kuε ± α, where ku ∈ R
are odd/even integers depending on the sign of b, and g 6= 0, the
function z(t) in (9) increases monotonically due to the fact that
sgn(b1k2sgn (Ψ) + ḟ(t)) = sgn(b1sgn (Ψ)) = ±1 is held
constant. This implies that z(t) eventually dominates g(t), and
pushes the hyper-surface towards an attractive sliding surface
s̃a(t) = kaε.

Case (III): The third case is when sgn (Ω) and sgn(s1) are
switching at the same time. In this case, sgn( ˙̃s) = sgn(s1) and
there are two possible trajectories. First, if s1(t) changes in such
a way that s̃(t) = β: (a) If β = kaε ± α, then the sign of b is
identified; (b) If β = kuε±α, then we have Case (II), and z(t)
eventually grows and dominate g(t). Second, if s1(t) changes
in such a way that s̃(t) is unstable, i.e. s̃(t) grows, then s̃(t)
eventually reaches an attractive sliding surface s̃Ψ(t) = kΨε.

V. SIMULATION RESULTS

Simulation for the second order system in (1) was carried out
to validate the proposed controller. Control gains and design
parameters used in the simulation are as follows:

k1 = 1.0 k2 = 2 α1 = 1 α2 = 1

p1 = 1/2 p2 = 2/3 p3 = 1/2 ε = 10

λ = 1 L = 0.3.

Thenon-vanishingdisturbancef(t)and theunknowninputgain
b were selected as

f(t) = sin(t), b = 1.
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Although the direction of the control input, i.e., sgn(b) = 1,
was specified, it was not used in the controller development.
The initial conditions were selected as

x1(0) = 20, x2(0) = 5.
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Fig. 1: Position x1(t) and velocity x2(t) versus time showing
finite time convergence of the states to the origin.
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Fig. 2: Surface s(t) and hypersurface s̃(t) versus time showing
finite time convergence of the hypersurface s̃(t) and finite time
convergence of the surface s(t).
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Fig. 3: Control input u(t) versus time.

Fig. 1 shows the position x1(t) and the velocity x2(t), Fig.
2 shows the surface s(t) and the hypersurface s̃(t), and Fig. 3
shows the control input u(t) as a function of time. In Fig. 2,
it can be seen that s̃(t) reaches a constant in finite time and
consequently s(t) goes to zero in finite time, which implies that
x(t) also goes to zero in finite time (see Fig. 1). It can be seen
that the control input u(t) in Fig. 3 is continuous and bounded,
and does not exhibit significant chattering.

VI. CONCLUSIONS

A continuous sliding mode controller is developed for a
class of second-orders systems with constant unknown control

direction. The presented control structure guarantees that the
sign of the input gain is identified in finite time as the hyper-
surface converges to a manifold. Once the control direction
is identified through appropriate attractive hypersurface, the
controller guarantees that the origin of the system is finite time
stable. Simulation results demonstrate the robustness of the
control algorithm.
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[34] V. Torres-González, T. Sanchez, L. M. Fridman, and J. A. Moreno,
“Design of continuous twisting algorithm,” Automatica, vol. 80, pp.
119–126, 2017.

[35] G. Bartolini, A. Pisano, and E. Usai, “On the second-order sliding
mode control of nonlinear systems with uncertain control direction,”
Automatica, vol. 45, no. 12, pp. 2982 – 2985, 2009.

[36] J. Kaloust and Z. Qu, “Continuous robust control design for nonlinear
uncertain systems without a priori knowledge of control direction,”
IEEE Transactions on Automatic Control, vol. 40, no. 2, pp. 276–282,
1995.

[37] ——, “Robust control design for nonlinear uncertain systems with
an unknown time-varying control direction,” IEEE Transactions on
Automatic Control, vol. 42, no. 3, pp. 393–399, Mar 1997.

[38] Z. Yang, S. C. P. Yam, L. K. Li, and Y. Wang, “Robust control for
uncertain nonlinear systems with state-dependent control direction,”
International Journal of Robust and Nonlinear Control, vol. 21, no. 1,
pp. 106–118, 2011.

[39] K. Deimling, Multivalued differential equations. Berlin, Germany:
Walter de Gruyter, 1992, vol. 1.

6753


